Abstract
The adequacy of screw anchorage is a critical factor in achieving successful spinal fusion. This study aimed to use machine learning algorithms to identify critical variables and predict pedicle screw loosening after degenerative lumbar fusion surgery. A total of 552 patients who underwent primary transpedicular lumbar fixation for lumbar degenerative disease were included. The LASSO method identified key features associated with pedicle screw loosening. Patient clinical characteristics, intraoperative variables, and radiographic parameters were collected and used to construct eight machine learning models, including a training set (80% of participants) and a test set (20% of participants). The XGBoost model exhibited the best performance, with an AUC of 0.884 (95% CI: 0.825-0.944) in the test set, along with the lowest Brier score. Ten crucial variables, including age, disease diagnosis: degenerative scoliosis, number of fused levels, fixation to S1, HU value, preoperative PT, preoperative PI-LL, postoperative LL, postoperative PT, and postoperative PI-LL were selected. In the prospective cohort, the XGBoost model demonstrated substantial performance with an accuracy of 83.32%. This study identified crucial variables associated with pedicle screw loosening after degenerative lumbar fusion surgery and successfully developed a machine learning model to predict pedicle screw loosening. The findings of this study may provide valuable information for clinical decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.