Abstract

Spatial susceptible landslide prediction is the one of the most challenging research areas which essentially concerns the safety of inhabitants. The novel geographic information web (GIW) application is proposed for dynamically predicting landslide risk in Chiang Rai, Thailand. The automated GIW system is coordinated between machine learning technologies, web technologies, and application programming interfaces (APIs). The new bidirectional long short-term memory (Bi-LSTM) algorithm is presented to forecast landslides. The proposed algorithm consists of 3 major steps, the first of which is the construction of a landslide dataset by using Quantum GIS (QGIS). The second step is to generate the landslide-risk model based on machine learning approaches. Finally, the automated landslide-risk visualization illustrates the likelihood of landslide via Google Maps on the website. Four static factors are considered for landslide-risk prediction, namely, land cover, soil properties, elevation and slope, and a single dynamic factor i.e., precipitation. Data are collected to construct a geospatial landslide database which comprises three historical landslide locations—Phu Chifa at Thoeng District, Ban Pha Duea at Mae Salong Nai, and Mai Salong Nok in Mae Fa Luang District, Chiang Rai, Thailand. Data collection is achieved using QGIS software to interpolate contour, elevation, slope degree and land cover from the Google satellite images, aerial and site survey photographs while the physiographic and rock type are on-site surveyed by experts. The state-of-the-art machine learning models have been trained i.e., linear regression (LR), artificial neural network (ANN), LSTM, and Bi-LSTM. Ablation studies have been conducted to determine the optimal parameters setting for each model. An enhancement method based on two-stage classifications has been presented to improve the landslide prediction of LSTM and Bi-LSTM models. The landslide-risk prediction performances of these models are subsequently evaluated using real-time dataset and it is shown that Bi-LSTM with Random Forest (Bi-LSTM-RF) yields the best prediction performance. Bi-LSTM-RF model has improved the landslide-risk predicting performance over LR, ANNs, LSTM, and Bi-LSTM in terms of the area under the receiver characteristic operator (AUC) scores by 0.42, 0.27, 0.46, and 0.47, respectively. Finally, an automated web GIS has been developed and it consists of software components including the trained models, rainfall API, Google API, and geodatabase. All components have been interfaced together via JavaScript and Node.js tool.

Highlights

  • Landslides are a natural disaster where land or rocks can follow along the slopes of the mountain

  • The first section shows the optimal parameters of logistic regression (LR), artificial neural network (ANN), long short-term memory (LSTM), and bidirectional long short-term memory (Bi-LSTM)

  • Five landslide factors were formulated via Quantum geographic information systems (GIS) (QGIS) software tool given by Aerial digital images, Google Satellite, and site surveys

Read more

Summary

Introduction

Landslides are a natural disaster where land or rocks can follow along the slopes of the mountain. Landslides occur with or after heavy rains, causing the soil to become so wet that the weight of the soil mass increases and as a result, the adhesion force between the soil masses decreases [1,2,3]. According to the statistics on landslides in Thailand, most of them occur in the mountainous regions from the upper central to the northern regions. There is a southern region in which they sometimes occur. While not as frequent as floods, over the past 30 years, landslides have killed more than 500 people

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.