Abstract
Electronic trigger detection tools hold promise to reduce Adverse drug event (ADEs) through efficiencies of scale and real-time reporting. We hypothesized that such a tool could automatically detect medication dosing errors as well as manage and evaluate dosing rule modifications. We created an order and alert analysis system that identified antibiotic medication orders and evaluated user response to dosing alerts. Orders associated with overridden alerts were examined for evidence of administration and the delivered dose was compared to pharmacy-derived dosing rules to confirm true overdoses. True overdose cases were reviewed for association with known ADEs. Of 55 546 orders reviewed, 539 were true overdose orders, which lead to 1965 known overdose administrations. Documentation of loose stools and diarrhea was significantly increased following drug administration in the overdose group. Dosing rule thresholds were altered to reflect clinically accurate dosing. These rule changes decreased overall alert burden and improved the salience of alerts. Electronic algorithm-based detection systems can identify antibiotic overdoses that are clinically relevant and are associated with known ADEs. The system also serves as a platform for evaluating the effects of modifying electronic dosing rules. These modifications lead to decreased alert burden and improvements in response to decision support alerts. The success of this test case suggests that gains are possible in reducing medication errors and improving patient safety with automated algorithm-based detection systems. Follow-up studies will determine if the positive effects of the system persist and if these changes lead to improved safety outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Medical Informatics Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.