Abstract
As the capacity of optical transport networks undergoes significant growth, there is an ongoing discussion on how to effectively leverage both spectral and spatial degrees of freedom to scale future network capacity. This paper presents an artificial intelligence (AI)-powered multi-task robot comprising a collaborative robotic arm and a mobile robotic base designed for optical network automation. The robot demonstrates the capability of direct fiber switching, establishing static fiber links that consume zero power and have minimal insertion loss from fiber connectors. As a precautionary measure before physically switching fiber cables, the robot performs path verification by detecting robot-driven events using real-time coherent receivers, aiming to avoid accidental unplugging. Additionally, the robot showcases its mobility by efficiently navigating between different network racks and rooms while executing various tasks. Implementing the automation of network operations using robots has the potential to reduce both capital and operational expenditures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.