Abstract

A clinically oriented Computer-Aided Diagnostic (CAD) system is of prime importance for the diagnosis of melanoma, since the deadly disease is associated with high morbidity and mortality. Unfortunately, the development of CAD tools is hampered by several issues, such as (i) smooth boundaries between the lesion and the surrounding skin, (ii) subtlety of features between the melanoma and non-melanoma skin lesions, and (iii) lack of reproducibility of CAD systems due to complexity. The proposed system aims to address the aforementioned issues. First, the lesion regions are localized by incorporating chroma based deformable models. Second, the lesion patterns are analyzed to detect various dermoscopic criteria. Further, a robust ensemble architecture is developed using dynamic classifier selection techniques to detect malignancy. Quantitative analysis is performed on two diverse datasets (ISBI and PH2) achieving an accuracy of 88% and 97%, sensitivity of 95% and 97% and specificity of 82% and 100% for ISBI and PH2 datasets respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.