Abstract

Most of the used computer aided diagnostic (CAD) systems based on applying the deep learning algorithms are similar from the point of view of data processing stages. The main typical stages are the training data acquisition, pre-processing, segmentation and classification. Homogeneity of a training dataset structure and its completeness are very important for minimizing inaccuracies in the development of the CAD systems. The main difficulties in the medical training data acquisition are concerned with their heterogeneity and incompleteness. Another problem is a lack of a sufficient large amount of data for training deep neural networks which are a basis of the CAD systems. In order to overcome these problems in the lung cancer CAD systems, a new methodology of the dataset acquisition is proposed by using as an example the database called LIRA which has been applied to training the intellectual lung cancer CAD system called by Dr. AIzimov. One of the important peculiarities of the dataset LIRA is the morphological confirmation of diseases. Another peculiarity is taking into account and including “atypical” cases from the point of view of radiographic features. The database development is carried out in the interdisciplinary collaboration of radiologists and data scientists developing the CAD system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.