Abstract

The essential sequences in breast magnetic resonance imaging (MRI) are the dynamic contrast-enhanced (DCE) images, which are widely used in clinical settings. Diffusion-weighted imaging (DWI) MRI also plays an important role in many diagnostic applications and in developing novel imaging bio-makers. Compared to DCE MRI, technical advantages of DWI include a shorter acquisition time, no need for administration of any contrast agent, and availability on most commercial scanners. Segmenting the whole-breast region is an essential pre-processing step in many quantitative and radiomics breast MRI studies. However, it is a challenging task for computerized methods due to the low contrast of intensity along breast chest wall boundaries. While several studies have reported computational methods for automated whole-breast segmentation in DCE MRI, the segmentation in DWI MRI is still underdeveloped. In this paper, we propose to use deep learning and transfer learning methods to segment the whole-breast in DWI MRI, by leveraging pretraining on a DCE MRI dataset. Experiments are reported in multiple breast MRI datasets including an external evaluation dataset and encouraging results are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.