Abstract

Acute pancreatitis is an inflammatory disorder of the pancreas. Medical imaging, such as computed tomography (CT), has been widely used to detect volume changes in the pancreas for acute pancreatitis diagnosis. Many pancreas segmentation methods have been proposed but no methods for pancreas segmentation from acute pancreatitis patients. The segmentation of an inflamed pancreas is more challenging than the normal pancreas due to the following two reasons. 1) The inflamed pancreas invades surrounding organs and causes blurry boundaries. 2) The inflamed pancreas has higher shape, size, and location variability than the normal pancreas. To overcome these challenges, we propose an automated CT pancreas segmentation approach for acute pancreatitis patients by combining a novel object detection approach and U-Net. Our approach includes a detector and a segmenter. Specifically, we develop an FCN-guided region proposal network (RPN) detector to localize the pancreatitis regions. The detector first uses a fully convolutional network (FCN) to reduce the background interference of medical images and generates a fixed feature map containing the acute pancreatitis regions. Then the RPN is employed on the feature map to precisely localize the acute pancreatitis regions. After obtaining the location of pancreatitis, the U-Net segmenter is used on the cropped image according to the bounding box. The proposed approach is validated using a collected clinical dataset with 89 abdominal contrast-enhanced 3D CT scans from acute pancreatitis patients. Compared with other start-of-the-art approaches for normal pancreas segmentation, our method achieves better performance on both localization and segmentation in acute pancreatitis patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.