Abstract
PurposeThe compliance checking of Building Information Modeling (BIM) models is crucial throughout the lifecycle of construction. The increasing amount and complexity of information carried by BIM models have made compliance checking more challenging, and manual methods are prone to errors. Therefore, this study aims to propose an integrative conceptual framework for automated compliance checking of BIM models, allowing for the identification of errors within BIM models.Design/methodology/approachThis study first analyzed the typical building standards in the field of architecture and fire protection, and then the ontology of these elements is developed. Based on this, a building standard corpus is built, and deep learning models are trained to automatically label the building standard texts. The Neo4j is utilized for knowledge graph construction and storage, and a data extraction method based on the Dynamo is designed to obtain checking data files. After that, a matching algorithm is devised to express the logical rules of knowledge graph triples, resulting in automated compliance checking for BIM models.FindingsCase validation results showed that this theoretical framework can achieve the automatic construction of domain knowledge graphs and automatic checking of BIM model compliance. Compared with traditional methods, this method has a higher degree of automation and portability.Originality/valueThis study introduces knowledge graphs and natural language processing technology into the field of BIM model checking and completes the automated process of constructing domain knowledge graphs and checking BIM model data. The validation of its functionality and usability through two case studies on a self-developed BIM checking platform.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have