Abstract
We discuss approaches to combining multimodal multidimensional images, namely, three-dimensional optical coherence tomography (OCT) data and two-dimensional color images of the fundus. Registration of these two modalities can help to adjust the position of the obtained OCT images on the retina. Some existing approaches to matching fundus images are based on finding key points that are considered invariant to affine transformations and are common to the two images. However, errors in the identification of such points can lead to registration errors. There are also methods for iterative adjustment of conversion parameters, but they are based on some manual settings. In this paper, we propose a method based on a full or partial search of possible combinations of the OCT image transformation to find the best approximation of the true transformation. The best approximation is determined using a measure of comparison of preprocessed image pixels. Further, the obtained transformations are compared with the available true transformations to assess the quality of the algorithm. The structure of the work includes: pre-processing of OCT and fundus images with the extraction of blood vessels, random search or grid search over possible transformation parameters (shift, rotation and scaling), and evaluation of the quality of the algorithm.
Highlights
We discuss approaches to combining multimodal multidimensional images, namely, threedimensional optical coherence tomography (OCT) data and two-dimensional color images of the fundus. Registration of these two modalities can help to adjust the position of the obtained OCT images on the retina
Some existing approaches to matching fundus images are based on finding key points that are considered invariant to affine transformations and are common to the two images
We propose a method based on a full or partial search of possible combinations of the OCT image transformation to find the best approximation of the true transformation
Summary
Структура работы включает в себя предварительную обработку оптической когерентной томографии и изображений глазного дна с выделением кровеносных сосудов, случайный перебор или перебор по сетке возможных параметров преобразования (сдвиг, поворот и масштабирование), оценку качества алгоритма. Однако в них используется лишь изображение глазного дна, что не всегда позволяет точно определить область поражения сетчатки. Для определения таких точек используется SIFT, однако этот алгоритм чувствителен к шумам и может давать нестабильные результаты, так как данные ОКТ содержат много шумов.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have