Abstract
The explorations of models beyond the Standard Model (BSM) naturally involve scans over the unknown BSM parameters. On the other hand, high precision predictions require calculations at the loop-level and thus a renormalization of (some of) the BSM parameters. Often many choices are possible for the renormalization scheme (RS). This concerns the choice of the set of to-be-renormalized parameters out of a larger set of BSM parameters, but can also concern the type of renormalization condition which is chosen for a specific parameter. A given RS can be well suited to yield “stable” and “well behaved” higher-order corrections in one part of the BSM parameter space, but can fail completely in other parts, which may not even be noticed numerically if an isolated parameter point is investigated, or when the higher-order BSM calculations are performed in an automated, not supervised set-up. Consequently, the (automated) exploration of BSM models requires a choice of a good RS before the calculation is performed. We propose a new method with which such a choice can be performed. We demonstrate the feasibility of our new method in the chargino/neutralino sector of the Minimal Supersymmetric Standard Model (MSSM), but stress the general applicability of our method to all types of BSM models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.