Abstract

A computational approach by an implementation of the principle component analysis (PCA) with K-means and Gaussian mixture (GM) clustering methods from machine learning algorithms to identify structural and dynamical heterogeneities of supercooled liquids is developed. In this method, a collection of the average weighted coordination numbers () of particles calculated from particles’ positions are used as an order parameter to build a low-dimensional representation of feature (structural) space for K-means clustering to sort the particles in the system into few meso-states using PCA. Nano-domains or aggregated clusters are also formed in configurational (real) space from a direct mapping using associated meso-states’ particle identities with some misclassified interfacial particles. These classification uncertainties can be improved by a co-learning strategy which utilizes the probabilistic GM clustering and the information transfer between the structural space and configurational space iteratively until convergence. A final classification of meso-states in structural space and domains in configurational space are stable over long times and measured to have dynamical heterogeneities. Armed with such a classification protocol, various studies over the thermodynamic and dynamical properties of these domains indicate that the observed heterogeneity is the result of liquid–liquid phase separation after quenching to a supercooled state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.