Abstract

Modern High-Level Synthesis (HLS) compilers aggressively optimize memory architectures. Bugs involving memory accesses are hard to detect, especially if they are inserted in the compilation process. We present an approach to isolate automatically memory bugs introduced by HLS tools, without user interaction, using only the original high-level specification. This is possible by tracing memory accesses in software (SW) and hardware (HW) executions on a given input dataset. The execution traces are compared performing a context-aware HW/SW address translation, leveraging alias-analysis, HLS memory allocation information and SW memory debugging practices. No restrictions are imposed on memory optimizations. We show results on the relevance of the problem, the coverage, the detected bugs. We also show that the approach can be adapted to different commercial and academic HLS tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.