Abstract

Patterning and assembly of biological cells in a 3D structure represents an important process in artificial tissue engineering. This paper presents the design of a multi-layer electrode scaffold used to assemble biological cells into a 3D pattern. Through suppling voltage to the multi-layer scaffold, three-dimensional electric fields can be established to manipulate cells towards the scaffold via dielectrophoresis (DEP). To fabricate such a 3D scaffold, we utilized the laser cutting technology to cut stainless steel into a precision structure with integrated micro-tips. Layers of the structure were then stacked together forming the 3D scaffold. Experiments were conducted and the scaffold was able to generate the DEP force and assemble biological cells at the desired positions with required patterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call