Abstract

In this paper, autofluorescent gelatin nanoparticles were synthesized as matrix metalloproteinase (MMP) responsive probes for cancer cell imaging. A modified two-step desolvation method was employed to generate these nanoparticles whose size was controllable and had stable autofluorescence. As glutaraldehyde was introduced as the crosslinking agent, the generation of Schiff base (CN) and double carbon bond (CC) between glutaraldehyde and gelatin endowed these gelatin nanoparticles distinct autofluorescence. Considering MMPs were usually overexpressed on the surface of cancer cells and they had degradation ability toward gelatin, we utilized these nanoparticles as imaging probes to responsively monitor the MMP metabolism of cancer cells according to the luminance change. As fluorescent probes, these nanoparticles had facile synthesis procedure and good biocompatibility, and provided a smart strategy to monitor cancer cell behaviors. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2854-2860, 2016.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call