Abstract

Development in lattice strain mapping using four-dimensional scanning transmission electron microscopy (4D-STEM) method now offers improved precision and feasibility. However, automatic and accurate diffraction analysis is still challenging due to noise and the complexity of intensity in diffraction patterns. In this work, we demonstrate an approach, employing the blob detection on cross-correlated diffraction patterns followed by a lattice fitting algorithm, to automate the processing of four-dimensional data, including identifying and locating disks, and extracting local lattice parameters without prior knowledge about the material. The approach is both tested using simulated diffraction patterns and applied on experimental data acquired from a Pd@Pt core-shell nanoparticle. Our method shows robustness against various sample thicknesses and high noise, capability to handle complex patterns, and picometer-scale accuracy in strain measurement, making it a promising tool for high-throughput 4D-STEM data processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.