Abstract

AbstractWe discuss a class of difference‐based estimators for the autocovariance in nonparametric regression when the signal is discontinuous and the errors form a stationary m‐dependent process. These estimators circumvent the particularly challenging task of pre‐estimating such an unknown regression function. We provide finite‐sample expressions of their mean squared errors for piecewise constant signals and Gaussian errors. Based on this, we derive biased‐optimized estimates that do not depend on the unknown autocovariance structure. Notably, for positively correlated errors, that part of the variance of our estimators that depend on the signal is minimal as well. Further, we provide sufficient conditions for ‐consistency; this result is extended to piecewise Hölder regression with non‐Gaussian errors.We combine our biased‐optimized autocovariance estimates with a projection‐based approach and derive covariance matrix estimates, a method that is of independent interest. An R package, several simulations and an application to biophysical measurements complement this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.