Abstract
This paper proposes a technique [termed censored average derivative estimation (CADE)] for studying estimation of the unknown regression function in nonparametric censored regression models with randomly censored samples. The CADE procedure involves three stages: firstly-transform the censored data into synthetic data or pseudo-responses using the inverse probability censoring weighted (IPCW) technique, secondly estimate the average derivatives of the regression function, and finally approximate the unknown regression function by an estimator of univariate regression using techniques for one-dimensional nonparametric censored regression. The CADE provides an easily implemented methodology for modelling the association between the response and a set of predictor variables when data are randomly censored. It also provides a technique for “dimension reduction” in nonparametric censored regression models. The average derivative estimator is shown to be root- n consistent and asymptotically normal. The estimator of the unknown regression function is a local linear kernel regression estimator and is shown to converge at the optimal one-dimensional nonparametric rate. Monte Carlo experiments show that the proposed estimators work quite well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.