Abstract
Oscillatory zoning (OZ) is a phenomenon common to many natural minerals whereby the mineral composition varies more or less regularly from the core of the crystal to its rim. Oscillatory zoned barite-celestite (Ba,Sr)SO4 crystals are one of the very few examples of the OZ phenomenon that were obtained under controlled laboratory conditions. It is known that such crystals can be synthesized by precipitation from an aqueous solution during counterdiffusion in a gel column connecting two reservoirs. We present here a model of oscillatory zoning in such a binary solid solution grown from an aqueous solution. By expanding on a previously suggested model, we obtain oscillatory dynamical solutions for two limit cases: the growth of a flat crystal face and the growth of a spherical crystallite. We consider an autocatalytic dependence between the crystal growth rate and the crystal surface composition. The oscillatory patterns then arise as a kinetic effect due to the coupling between the diffusion field around the crystal and the fast crystal growth under far-from-equilibrium conditions. The effects of fluctuations in the aqueous solution concentrations are also considered. It is shown that they may lead to noisy oscillatory patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.