Abstract

ABSTRACT In recent years, feature engineering-based machine learning models have made significant progress in auto insurance fraud detection. However, most models or systems focused only on structural data and did not utilize multi-modal data to improve fraud detection efficiency. To solve this problem, we adapt both natural language processing and computer vision techniques to our knowledge-based algorithm and construct an Auto Insurance Multi-modal Learning (AIML) framework. We then apply AIML to detect fraud behavior in auto insurance cases with data from real scenarios and conduct experiments to examine the improvement in model performance with multi-modal data compared to baseline model with structural data only. A self-designed Semi-Auto Feature Engineer (SAFE) algorithm to process auto insurance data and a visual data processing framework are embedded within AIML. Results show that AIML substantially improves the model performance in detecting fraud behavior compared to models that only use structural data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.