Abstract

BackgroundRecent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion of absolute pitch in people with autism. Theoretical accounts connect both of these with shared neural principles of local hyper- and global hypoconnectivity, enhanced perceptual functioning, and a detail-focused cognitive style. This is the first study to investigate absolute pitch proficiency, autistic traits, and brain correlates in the same study.Sample and methodsGraph theoretical analysis was conducted on resting-state (eyes closed and eyes open) EEG connectivity (wPLI, weighted phase lag index) matrices obtained from 31 absolute pitch (AP) and 33 relative pitch (RP) professional musicians. Small-worldness, global clustering coefficient, and average path length were related to autistic traits, passive (tone identification) and active (pitch adjustment) absolute pitch proficiency, and onset of musical training using Welch two-sample tests, correlations, and general linear models.ResultsAnalyses revealed increased path length (delta 2–4 Hz), reduced clustering (beta 13–18 Hz), reduced small-worldness (gamma 30–60 Hz), and increased autistic traits for AP compared to RP. Only clustering values (beta 13–18 Hz) were predicted by both AP proficiency and autistic traits. Post hoc single connection permutation tests among raw wPLI matrices in the beta band (13–18 Hz) revealed widely reduced interhemispheric connectivity between bilateral auditory-related electrode positions along with higher connectivity between F7–F8 and F8–P9 for AP. Pitch-naming ability and pitch adjustment ability were predicted by path length, clustering, autistic traits, and onset of musical training (for pitch adjustment) explaining 44% and 38% of variance, respectively.ConclusionsResults show both shared and distinct neural features between AP and autistic traits. Differences in the beta range were associated with higher autistic traits in the same population. In general, AP musicians exhibit a widely underconnected brain with reduced functional integration and reduced small-world property during resting state. This might be partly related to autism-specific brain connectivity, while differences in path length and small-worldness reflect other ability-specific influences. This is further evidenced for different pathways in the acquisition and development of absolute pitch, likely influenced by both genetic and environmental factors and their interaction.

Highlights

  • Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion of absolute pitch in people with autism

  • Analyses revealed increased path length, reduced clustering, reduced smallworldness, and increased autistic traits for absolute pitch (AP) compared to relative pitch (RP)

  • Pitch-naming ability and pitch adjustment ability were predicted by path length, clustering, autistic traits, and onset of musical training explaining 44% and 38% of variance, respectively

Read more

Summary

Introduction

Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion of absolute pitch in people with autism. Theoretical accounts connect both of these with shared neural principles of local hyper- and global hypoconnectivity, enhanced perceptual functioning, and a detail-focused cognitive style. This is the first study to investigate absolute pitch proficiency, autistic traits, and brain correlates in the same study. Small-worldness, global clustering coefficient, and average path length were related to autistic traits, passive (tone identification) and active (pitch adjustment) absolute pitch proficiency, and onset of musical training using Welch two-sample tests, correlations, and general linear models. Often exhibit more explicitly developed RP abilities (e.g., verbal labeling of musical intervals to a similar proficiency as tone labeling of absolute pitch possessors) than less musically trained or musically untrained people [18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call