Abstract

Advanced III–V transistors require unprecedented low-resistance contacts in order to simultaneously scale bandwidth, fmax and ft with the physical active region [M.J.W. Rodwell, M. Le, B. Brar, in: Proceedings of the IEEE, 96, 2008, p. 748]. Low-resistance contacts have been previously demonstrated using molecular beam epitaxy (MBE), which provides active doping above 4×1019 cm−3 and permits in-situ metal deposition for the lowest resistances [U. Singisetti, M.A. Wistey, J.D. Zimmerman, B.J. Thibeault, M.J.W. Rodwell, A.C. Gossard, S.R. Bank, Appl. Phys. Lett., submitted]. But MBE is a blanket deposition technique, and applying MBE regrowth to deep-submicron lateral device dimensions is difficult even with advanced lithography techniques. We present a simple method for selectively etching undesired regrowth from the gate or mesa of a III–V MOSFET or laser, resulting in self-aligned source/drain contacts regardless of the device dimensions. This turns MBE into an effectively selective area growth technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call