Abstract

Olive oil, which has been produced mainly in the Mediterranean area since the ancient times, has a high nutritional value linked to many health benefits. Extra virgin, which is the purest form of olive oil, has excellent quality and premium prices. Many cases of adulteration and fraud necessitate the development of reliable and accurate methods for olive oil authentication. DNA-based methods analyze the residual DNA extracted from olive oil and use molecular markers for genetic identification of different species, subspecies or cultivars because these markers act as signs which reflect distinct genetic profiles. This study reviews the process by which DNA from olive oil is extracted and analyzed by the most recently used markers in the authentication of olive oil, such as Simple Sequence Repeats (SSR) or microsatellites and the single nucleotide polymorphisms (SNPs). Methods of analysis such as qPCR and digital PCR are also discussed with a special emphasis placed on the method of High-Resolution Melting (HRM), a post-polymerase chain reaction method, which enables rapid, high performing identification of genetic variants in the DNA regions of interest without sequencing, and may differentiate very similar cultivars which differ in only one nucleotide in a specific locus.

Highlights

  • Polymerase Chain Reaction (PCR) was used to generate Simple Sequence Repeats (SSR) and ISSR markers from genomic DNA extracted from young leaves and a total of 107 polymorphic bands were detected on thirteen SSR loci, with an average of eight alleles per locus

  • The advantages to single nucleotide polymorphisms (SNPs) apply to olive oil authentication: a) they are the most abundant genetic markers; b) they have lower mutation rates and are stably inherited; c) they can be detected within a low size range of amplicons (e.g. 100bp) so they are a better choice for DNA that has been degraded and extracted from a complex matrix such as olive oil, d) they are mostly biallelic, e) they are able to differentiate very similar cultivars that may differ in only one nucleotide in a specific locus (Mehta et al, 2017; Kalogianni et al, 2015; Bracci et al, 2011; Agrimonti et al, 2011)

  • Extra virgin olive oil produced in limited quantities by certain varieties and in specific geographical areas has premium prices that reflect its excellent quality and for that reason it is subjected to a high degree of adulteration

Read more

Summary

Authentication of olive oil based on DNA analysis

This study reviews the process by which DNA from olive oil is extracted and analyzed by the most recently used markers in the authentication of olive oil, such as Simple Sequence Repeats (SSR) or microsatellites and the single nucleotide polymorphisms (SNPs). Methods of analysis such as qPCR and digital PCR are discussed with a special emphasis placed on the method of High-Resolution Melting (HRM), a post-polymerase chain reaction method, which enables rapid, high performing identification of genetic variants in the DNA regions of interest without sequencing, and may differentiate very similar cultivars which differ in only one nucleotide in a specific locus.

NGS Next generation sequencing
Main Findings
CONCLUSIONS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.