Abstract
Potential of hybrid gold nanoparticles/graphene oxide (AuNPs/GO) coated single mode fiber (SMF) sensor by exploiting localized surface plasmon resonance (LSPR) effect for Musta’mal water identification was studied. Three structure shapes of fiber optics such as straight-shape, loop-shape and u-shape had been prepared. Three layers of AuNPs with 50 nm in diameter were drop-casted onto the partially unclad polished single mode fiber (SMF) to observe the maximum sensitivity of LSPR. To enhance the LSPR effect, one layer of GO was deposited on top of the AuNPs layer. Two optical light sources with least attenuation (1310 nm and 1550 nm) were employed to study the optical power output as the sensor immersed in different type of water samples. The u-shape SMF portrayed the maximum output power about 24.2 dBm at 1550 nm wavelength. According to the analysis, the deployment of 1550 nm laser wavelength resulted in better sensitivity with 23.2% improvement compared to 1310 nm wavelength. Apparently, the LSPR phenomenon created by AuNPs/GO able to enhance the plasmonic signal up to 51.9% than the uncoated SMF. The thinnest diameter of SMF’s cladding, d=0.1195 mm with U-shape structure exhibited the highest power different of 1.10 dBm, in which suggested the best sensing performance. In conclusion, the optimization of AuNPs/GO u-shape polished SMF resulted in the maximum sensitivity with value of S=72.7 dBm/RIU for Musta'mal water identification.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have