Abstract

In the present study, synthesis of different rare earth (RE) doped cobalt ferrite nanoparticles was done via facile sol-gel auto-combustion method using four different RE metal ions: Eu, Gd, Dy and Nd. The RE substituted cobalt ferrite nanoparticles were then characterized using FT-IR, powder XRD, HR-TEM, SAED, EDX, VSM and DRS techniques. From the characterization results, a significant variation in the structural, magnetic and optical properties of pure cobalt ferrite was observed with the introduction of different RE metal ions. This change in the properties was emerged due to the distortion of the ferrite crystal lattice due to replacement of smaller ionic radii Fe3+ ions with the comparatively larger ionic radii RE3+ metal ions. The catalytic activity of the fabricated RE doped cobalt ferrite nanoparticles was studied for the photo-Fenton degradation of cationic and anionic dyes. Under visible light irradiation, the as prepared RE doped nanoparticles exhibited great enhancement in the photo-Fenton degradation of dye molecules as compared to pure cobalt ferrite nanoparticles. The enhancement in the degradation rate was ascribed to the generation of defects in the crystal lattice, lower crystallite size and reduced band gap energy values which facilitated the facile transfer of photo-generated holes and electrons. Best catalytic results were obtained for CoNd0.08Fe1.92O4 for SO dye (k = 2.23 × 10−1 min−1) which were found to be around 9 times higher than the pure cobalt ferrite nanoparticles (k = 0.23 × 10−1 min−1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call