Abstract
The emergence of augmented reality (AR) in surgical procedures could significantly enhance accuracy and outcomes, particularly in the complex field of orthognathic surgery. This study compares the effectiveness and accuracy of traditional drilling guides with two AR-based navigation techniques: one utilizing ArUco markers and the other employing small-workspace infrared tracking cameras for a drilling task. Additionally, an alternative AR visualization paradigm for surgical navigation is proposed that eliminates the potential inaccuracies of image detection using headset cameras. Through a series of controlled experiments designed to assess the accuracy of hole placements in surgical scenarios, the performance of each method was evaluated both quantitatively and qualitatively. The findings reveal that the small-workspace infrared tracking camera system is on par with the accuracy of conventional drilling guides, hinting at a promising future where such guides could become obsolete. This technology demonstrates a substantial advantage by circumventing the common issues encountered with traditional tracking systems and surpassing the accuracy of ArUco marker-based navigation. These results underline the potential of this system for enabling more minimally invasive interventions, a crucial step towards enhancing surgical accuracy and, ultimately, patient outcomes. The study resulted in three relevant contributions: first, a new paradigm for AR visualization in the operating room, relying only on exact tracking information to navigate the surgeon is proposed. Second, the comparative analysis marks a critical step forward in the evolution of surgical navigation, paving the way for integrating more sophisticated AR solutions in orthognathic surgery and beyond. Finally, the system with a robotic arm is integrated and the inaccuracies present in a typical human-controlled system areevaluated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have