Abstract

Patients with type 2 diabetes (T2D) exhibit greater daytime blood pressure (BP) variability, increasing their cardiovascular risk. Given the number of daily activities that incorporate short-duration isometric muscle contractions (e.g., carrying groceries), herein we investigated BP and muscle sympathetic nerve activity (MSNA) responses at the onset of isometric handgrip (HG). We tested the hypothesis that, relative to control subjects, patients with T2D would exhibit exaggerated pressor and MSNA responses to the immediate onset of HG. Mean arterial pressure (MAP) and MSNA were quantified during the first 30 s of isometric HG at 30% and 40% of maximal voluntary contraction (MVC) and during a cold pressor test (CPT), a nonexercise sympathoexcitatory stimulus. The onset of 30% MVC HG evoked similar increases in MAP between groups (P = 0.17); however, the increase in MSNA was significantly greater in patients with T2D versus control subjects with the largest group difference at 20 s (P < 0.001). At the onset of 40% MVC HG, patients with T2D demonstrated greater increases in MAP (e.g., 10 s, T2D: 9 ± 1 mmHg, controls: 5 ± 2 mmHg; P = 0.04). MSNA was also greater in patients with T2D at 40% MVC onset but differences were only significant at the 20-30 s timepoint (T2D: 15 ± 3 bursts/min, controls: -2 ± 4 bursts/min; P < 0.001). Similarly, MAP and MSNA responses were augmented during the onset of CPT in T2D patients. These findings demonstrate exaggerated pressor and MSNA reactivity in patients with T2D, with rapid and robust responses to both isometric contractions and cold stress. This hyper-responsiveness may contribute to daily surges in BP in patients with T2D, increasing their short-term and long-term cardiovascular risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.