Abstract

The numerical simulation of the interaction between a free surface flow and a moving obstacle is considered for the analysis of hydroplaning flows. A new augmented Lagrangian method, coupled to fictitious domains and penalty methods, is proposed for the simulation of multi-phase flows. The augmented Lagrangian parameter is estimated by an automatic analysis of the discretization matrix resulting from the approximation of the momentum equations. The algebraic automatic augmented Lagrangian 3AL approach is validated on the natural convection in a differentially heated cavity, a two-dimensional collapse of a water column, the three-dimensional settling of a particle in a tank and the falling of a dense cylinder in air. Finally, the 3AL method is utilized to simulate the hydroplaning of a tire under various pattern shape conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.