Abstract
Glyphosate, a widely used post emergence broad spectrum herbicide, recognized for its harmful impact on the environment, is sequentially mineralized in a two-step process: catalytic wet air oxidation (cWAO) followed by microbial degradation. Iron nanoparticle (Fe NP)-tipped carbon nanofibers (CNFs) supported over activated carbon beads (ACBs) are used as a cWAO catalyst. Fe-CNF/ACB with a high specific surface area (~296 m2/g), high thermal stability (25–1100 °C) and an increased exposure of the Fe NPs to the surrounding water causes ~70% degradation of the aqueous glyphosate (100 mg/L) in 2 h at 220 °C, 25 bar-air pressure, and 0.75 g/L of catalyst-dose. The residual glyphosate is, however, completely mineralized in the next 2 h at 37 °C, with 100% reduction in total organic carbon content, using a bacterium isolated from the industrial wastewater. The bacterium is phylogenetically identified as Providencia vermicola via 16s rRNA analysis. Non-toxicity of Fe-CNF/ACB towards the isolated bacterial strain eases the sequential remediation process by circumventing the necessity of removing the spent catalyst from the reaction mixture before switching over to microbial degradation. The present approach based on cWAO followed by microbial degradation is indicated to be efficient for the degradation and mineralization of toxic, biorefractory pollutants in wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.