Abstract

Although CD40 signaling is required for activation and differentiation of B cells, including germinal center (GC) formation and generation of memory B cells, in vivo generation of CD40 signaling augments plasma cell differentiation but disrupts GCs. Thus, CD40 signaling is thought to direct B cells to extrafollicular plasma cell fate rather than GC formation. In this study, we analyzed CD40L transgenic (CD40LTg) mice that constitutively express CD40L on B cells. After immunization, activation of B cells, but not dendritic cells, was augmented, although dendritic cells can be activated by CD40 ligation. Bone marrow chimera carrying CD40LTg and nontransgenic B cells showed increased Ab production from transgenic, but not from coexisting nontransgenic, B cells, suggesting that CD40L on a B cell preferentially stimulates the same B cell through an autocrine pathway, thereby augmenting Ab production. Although GCs rapidly regressed after day 5 of immunization and failed to generate late-appearing high-affinity Ab, CD40LTg mice showed normal GC formation up to day 5, as well as normal generation of long-lived plasma cells and memory B cell responses. This observation suggests that CD40 signaling does not block GC formation or differentiation of GC B cells, but it inhibits sustained expansion of GC B cells and augments B cell differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call