Abstract
Temporal regularities in the environment are thought to guide the allocation of attention in time. Here, we explored whether entrainment of neuronal oscillations underpins this phenomenon. Participants viewed a regular stream of images in silence, or in-synchrony or out-of-synchrony with an unmarked beat position of a slow (1.3Hz) auditory rhythm. Focusing on occipital recordings, we analyzed evoked oscillations shortly before and event-related potentials (ERPs) shortly after image onset. The phase of beta-band oscillations in the in-synchrony condition differed from that in the out-of-synchrony and silence conditions. Additionally, ERPs revealed rhythm effects for a stimulus onset potential (SOP) and the N1. Both were more negative for the in-synchrony as compared to the out-of-synchrony and silence conditions and their amplitudes positively correlated with the beta phase effects. Taken together, these findings indicate that rhythmic expectations are supported by a reorganization of neural oscillations that seems to benefit stimulus processing at expected time points. Importantly, this reorganization emerges from global rhythmic cues, across modalities, and for frequencies significantly higher than the external rhythm. As such, our findings support the idea that entrainment of neuronal oscillations represents a general mechanism through which the brain uses predictive elements in the environment to optimize attention and stimulus perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.