Abstract
Objectives: Children with hearing loss listen and learn in environments with noise and reverberation, but perform more poorly in noise and reverberation than children with normal hearing. Even with amplification, individual differences in speech recognition are observed among children with hearing loss. Few studies have examined the factors that support speech understanding in noise and reverberation for this population. This study applied the theoretical framework of the Ease of Language Understanding (ELU) model to examine the influence of auditory, cognitive, and linguistic factors on speech recognition in noise and reverberation for children with hearing loss.Design: Fifty-six children with hearing loss and 50 age-matched children with normal hearing who were 7–10 years-old participated in this study. Aided sentence recognition was measured using an adaptive procedure to determine the signal-to-noise ratio for 50% correct (SNR50) recognition in steady-state speech-shaped noise. SNR50 was also measured with noise plus a simulation of 600 ms reverberation time. Receptive vocabulary, auditory attention, and visuospatial working memory were measured. Aided speech audibility indexed by the Speech Intelligibility Index was measured through the hearing aids of children with hearing loss.Results: Children with hearing loss had poorer aided speech recognition in noise and reverberation than children with typical hearing. Children with higher receptive vocabulary and working memory skills had better speech recognition in noise and noise plus reverberation than peers with poorer skills in these domains. Children with hearing loss with higher aided audibility had better speech recognition in noise and reverberation than peers with poorer audibility. Better audibility was also associated with stronger language skills.Conclusions: Children with hearing loss are at considerable risk for poor speech understanding in noise and in conditions with noise and reverberation. Consistent with the predictions of the ELU model, children with stronger vocabulary and working memory abilities performed better than peers with poorer skills in these domains. Better aided speech audibility was associated with better recognition in noise and noise plus reverberation conditions for children with hearing loss. Speech audibility had direct effects on speech recognition in noise and reverberation and cumulative effects on speech recognition in noise through a positive association with language development over time.
Highlights
Children spend a considerable amount of time listening in environments with suboptimal acoustics, including high levels of background noise and reverberation (Knecht et al, 2002; Crukley et al, 2011)
Noise and reverberation frequently co-occur in classrooms and other listening environments experienced by children (Klatte et al, 2010)
There were no significant differences between children with hearing loss and children with normal hearing
Summary
Children spend a considerable amount of time listening in environments with suboptimal acoustics, including high levels of background noise and reverberation (Knecht et al, 2002; Crukley et al, 2011). Because noise and reverberation are ubiquitous, auditory learning, and socialization frequently occur in conditions with an acoustically degraded speech signal. The ability to understand degraded speech is an important developmental skill that does not reach full maturity until adolescence in children with typical hearing (Johnson, 2000; Corbin et al, 2016). The protracted developmental time course for speech recognition in adverse listening conditions in typically developing children has been attributed to the parallel maturation of cognitive and linguistic skills (Sullivan et al, 2015; McCreery et al, 2017; MacCutcheon et al, 2019). The persistence of speech recognition deficits for children with hearing loss even after access to the signal has been restored with amplification raises questions about the mechanisms that affect the ability to understand degraded speech in everyday listening environments. The main goal of this study was to examine the factors that predicted individual differences in speech recognition in noise and in noise with reverberation by children with hearing loss
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.