Abstract

Electrochemical immunosensors, surpassing conventional diagnostics, exhibit significant potential for cancer biomarker detection. However, achieving a delicate balance between signal sensitivity and operational stability, especially at the heterostructure interface, is crucial for practical immunosensors. Herein, porous carbon (PC) integration with Ti3C2Tx-MXene (MX) and gold nanoparticles (Au NPs) constructs a versatile immunosensing platform for detecting extracellular matrix protein-1 (ECM1), a breast cancer-associated biomarker. The inclusion of PC provided robust structural support, enhancing electrolytic diffusion with an expansive surface area while synergistically facilitating charge transfer with Ti3C2Tx. The biosensor optimized with 1.0 mg PC demonstrates a robust electrochemical redox response to the surface-bound thionine (th) redox probe, utilizing an inhibition-based strategy for ECM1 detection. The robust antibody-antigen interactions across the PC-integrated Ti3C2Tx-Au NPs platform (MX-Au-C-1) enabled robust ECM1 detection within 0.1–7.5 nM, with a low limit of detection (LOD) of 0.012 nM. The constructed biosensor shows improved operational stability with a 98.6 % current retention over 1 h, surpassing MXene-integrated (MX-Au) and pristine Au NPs (63.2 % and 44.3 %, respectively) electrodes. Moreover, the successful adaptation of the artificial neural network (ANN) model for predictive analysis of the generated DPV data further validates the accuracy of the biosensor, promising its future application in AI-powered remote health monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.