Abstract

Superfine flip-chip bonding technologies in 20 µm pitch microbumps on copper through-hole electrodes are substantial technologies for three-dimensional (3D) chip stacking LSI. As the advanced interconnection technology to connect the through-hole electrodes at low temperature and low bonding force, the ultrasonic flip-chip bonding (UFB) was verified by the total evaluation and the atomic-level analysis of the bonding interface on the chip-on-chip (COC) structure utilizing electroplated Au microbumps in 20 µm pitch. First, the lower limit bonding conditions were confirmed to be a bonding force of 20 N and an amplitude of 3 µm; the bonding accuracy achieved was within ±2 µm, the electrical interface resistance was stable about 0.57 Ω, and no damage around the interconnection structure was observed. Secondly, the mechanism of solid phase bonding interface formation at the atomic level without solid phase diffusion was confirmed as the Au-Au solid phase UFB bonding mechanism, and the orientation geometry of such bonding was apparently different from that of thermo compression bonding, which showed solid phase diffusion across the boundary. The achievement of this research will enable the realization of the 3D chip stacking LSI in the near future, which is characterized by scalabilities and high-performance. The subjects are the elucidation of the real oscillation contributes to bonding to optimize the process conditions and the establishment of the micro joint reliabilities utilizing UFB process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.