Abstract

Huntington's disease (HD) is caused by the expansion of CAG trinucleotide repeats in exon 1 of HD gene encoding huntingtin (Htt), which is characterized by aggregation and formation of mutant Htt containing expanded polyglutamine (polyQ) repeats. Dysfunction of the ubiquitin-proteasome system (UPS) plays a critical role in the pathogenesis of HD. As the linkage mediator between ubiquitin and specific target proteins, E3 ubiquitin ligases have been suggested to be involved in mHtt degradation and HD pathology. However, the potential involvement of the E3 ligase WWP1 in HD has not been explored. The present study determined whether WWP1 is involved in the development of HD in both in vivo and in vitro models. The results showed that in contrast to several other E3 ligases, expression of WWP1 is enhanced in mice and N2a cells expressing mutant Htt (160Q) and co-localized with mHtt protein aggregates. In addition, expression of WWP1 positively regulates mutan Htt levels, aggregate formation, and cell toxicity. Further analysis revealed that WWP1 ubiquitinated mHtt at an atypical position of Lys-63, which may have inhibited degradation of mutant Htt through the ubiquitin-proteasome pathway. In conclusion, these results suggested that the E3 ligase WWP1 is involved in the pathogenesis of HD; therefore, it may be a novel target for therapeutic intervention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call