Abstract

ObjectiveSpasmodic dysphonia (SD) is a debilitating voice/speech disorder without an effective cure. To obtain a better understanding of the underlying cortical neural mechanism of the disease we analyzed electroencephalographic (EEG) signals of people with SD during voice production. MethodTen SD individuals and 10 healthy volunteers produced 50 vowel vocalization epochs of 2500 ms duration. Two EEG features were derived: (1) event-related change in spectral power during vocalization relative to rest, (2) inter-regional spectral coherence. ResultsDuring early vocalization (500–1000 ms) the SD group showed significantly larger alpha band spectral power over the left motor cortex. During late vocalization (1000–2500 ms) SD patients showed a significantly larger gamma band coherence between left somatosensory and premotor cortical areas. ConclusionsTwo atypical patterns of cortical activity characterize the pathophysiology of spasmodic dysphonia during voice production: (1) a reduced movement-related desynchronization of motor cortical networks, (2) an excessively large synchronization between left somatosensory and premotor cortical areas. SignificanceThe pathophysiology of SD is characterized by an abnormally high synchronous activity within and across cortical neural networks involved in voice production that is mainly lateralized in the left hemisphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.