Abstract

Reductions in the auditory mismatch negativity (MMN) have been well-demonstrated in schizophrenia rendering it a promising biomarker for understanding the emergence of psychosis. According to the predictive coding theory of psychosis, MMN impairments may reflect disturbances in hierarchical information processing driven by maladaptive precision-weighted prediction errors (pwPEs) and enhanced belief updating. We applied a hierarchical Bayesian model of learning to single-trial EEG data from an auditory oddball paradigm in 31 help-seeking antipsychotic-naive high-risk individuals and 23 healthy controls to understand the computational mechanisms underlying the auditory MMN. We found that low-level sensory and high-level volatility pwPE expression correlated with EEG amplitudes, coinciding with the timing of the MMN. Furthermore, we found that prodromal positive symptom severity was associated with increased expression of sensory pwPEs and higher-level belief uncertainty. Our findings provide support for the role of pwPEs in auditory MMN generation, and suggest that increased sensory pwPEs driven by changes in belief uncertainty may render the environment seemingly unpredictable. This may predispose high-risk individuals to delusion-like ideation to explain this experience. These results highlight the value of computational models for understanding the pathophysiological mechanisms of psychosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.