Abstract
Network embedding is a technique used to learn a low-dimensional vector representation for each node in a network. This method has been proven effective in network mining tasks, especially in the area of recommendation systems. The real-world scenarios often contain rich attribute information that can be leveraged to enhance the performance of representation learning methods. Therefore, this article proposes an attribute network embedding recommendation method based on self-attention mechanism (AESR) that caters to the recommendation needs of users with little or no explicit feedback data. The proposed AESR method first models the attribute combination representation of items and then uses a self-attention mechanism to compactly embed the combination representation. By representing users as different anchor vectors, the method can efficiently learn their preferences and reconstruct them with few learning samples. This achieves accurate and fast recommendations and avoids data sparsity problems. Experimental results show that AESR can provide personalized recommendations even for users with little explicit feedback information. Moreover, the attribute extraction of documents can effectively improve recommendation accuracy on different datasets. Overall, the proposed AESR method provides a promising approach to recommendation systems that can leverage attribute information for better performance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.