Abstract
Graph embedding is of great significance for the research and analysis of graphs. Graph embedding aims to map nodes in the network to low-dimensional vectors while preserving information in the original graph of nodes. In recent years, the appearance of graph neural networks has significantly improved the accuracy of graph embedding. However, the influence of clusters was not considered in existing graph neural network (GNN)-based methods, so this paper proposes a new method to incorporate the influence of clusters into the generation of graph embedding. We use the attention mechanism to pass the message of the cluster pooled result and integrate the whole process into the graph autoencoder as the third layer of the encoder. The experimental results show that our model has made great improvement over the baseline methods in the node clustering and link prediction tasks, demonstrating that the embeddings generated by our model have excellent expressiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.