Abstract
We consider the discrete-time system x ( n )= g x ( n m 1)+ f ( y ( n m k )), y ( n )= g y ( n m 1)+ f ( x ( n m k )), n ] N describing the dynamic interaction of two identical neurons, where g ] (0,1) is the internal decay rate, f is the signal transmission function and k is the signal transmission delay. We construct explicitly an attractive 2 k -periodic orbit in the case where f is a step function (McCulloch-Pitts Model). For the general nonlinear signal transmission functions, we use a perturbation argument and sharp estimates and apply the contractive map principle to obtain the existence and attractivity of a 2 k -periodic orbit. This is contrast to the continuous case (a delay differential system) where no stable periodic orbit can occur due to the monotonicity of the associated semiflow.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have