Abstract
This paper is mainly concerned with the vision-based attitude stabilization of a quad-rotor UAV. The methods for attitude control rely on computing the roll and pitch angles of the vehicle from a two-camera vision system. One camera is attached to the body-fixed x-axis and the other to the body-fixed y-axis. The attitude computation for the quad-rotor UAV is performed by image processing consisting of Canny edge and Hough line detection. A proportional and integral controller is employed for the attitude hold autopilot. In this paper, the quad-rotor UAV is modeled by 6-DOF nonlinear equations of motion that includes rotor aerodynamics with blade element theory. The performance of the proposed method is evaluated through 3D environmental numerical simulations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have