Abstract
In navigation applications, the presence of an unknown bias in the measurement of rate gyros is a key performance-limiting factor. In order to estimate the gyro bias and improve the accuracy of attitude measurement, we proposed a new method which uses the rotation of an inertial measurement unit, which is independent from rigid body motion. By actively changing the orientation of the inertial measurement unit (IMU), the proposed method generates sufficient relations between the gyro bias and tilt angle (roll and pitch) error via ridge body dynamics, and the gyro bias, including the bias that causes the heading error, can be estimated and compensated. The rotation inertial measurement unit method makes the gravity vector measured from the IMU continuously change in a body-fixed frame. By theoretically analyzing the mathematic model, the convergence of the attitude and gyro bias to the true values is proven. The proposed method provides a good attitude estimation using only measurements from an IMU, when other sensors such as magnetometers and GPS are unreliable. The performance of the proposed method is illustrated under realistic robotic motions and the results demonstrate an improvement in the accuracy of the attitude estimation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have