Abstract

In many continuous manufacturing processes such as paper, textile, winding and plastic extrusion, electric drives are frequently required to work in synchronization, often with high tolerances to ensure uniform product quality and avoid failure of the product. In a multi-motor system (MMS), voltage dips are the most common cause of the motor stoppage, and the transient loss of synchronism between motors can result in a complete system shutdown. This paper proposes a multi-motor system controlled by a Backstepping strategy to ensure servo-control and synchronization of induction motors. This technique includes indirect rotor field-oriented control (IRFOC), linear speed control, and mechanical tension control, of induction motors. Investigations of symmetrical voltage sag effects on speed, torque, and mechanical tension are also carried out. Simulation results obtained using MatlabÂŽ/SimulinkTM/SimPowerSystemsÂŽ are presented to demonstrate the efficiency of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.