Abstract
Galectin-9 (gal-9), widely expressed in many tissues, regulates Th1 cells and induces their apoptosis through its receptor, T-cell Ig mucin 3, which is mainly expressed on terminally differentiated Th1 cells. Type 1 diabetes is a Th1-dominant autoimmune disease that specifically destroys insulin-producing beta cells. To suppress the Th1 immune response in the development of autoimmune diabetes, we overexpressed gal-9 in NOD mice by injection of a plasmid encoding gal-9. Mice treated with gal-9 plasmid were significantly protected from diabetes and showed less severe insulitis compared with controls. Flow cytometric analyses in NOD-T1/2 double transgenic mice showed that Th1-cell population in spleen, pancreatic lymph node and pancreas was markedly decreased in gal-9 plasmid-treated mice, indicating a negative regulatory role of gal-9 in the development of pathogenic Th1 cells. Splenocytes from gal-9 plasmid-treated mice were less responsive to mitogenic stimulation than splenocytes from the control group. However, adoptive transfer of splenocytes from gal-9-treated or control mice caused diabetes in NOD/SCID recipients with similar kinetics, suggesting that gal-9 treatment does not induce active tolerance in NOD mice. We conclude that gal-9 may downregulate Th1 immune response in NOD mice and could be used as a therapeutic target in autoimmune diabetes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have