Abstract

A theoretical analysis is given of an experiment being performed at the University of Southampton [1] as part of a programme to quantify the effectiveness of perforated screens in dissipating sound in the presence of tangential mean flow. In the experiment vorticity is generated at the trailing edge of a splitter plate in a mean flow duct by a plane sound wave incident from upstream, acoustic energy being ceded to the kinetic energy of the vortex field. An expression is derived for the dissipated sound power at arbitrary subsonic mean flow Mach number and frequency. The calculation is performed both by a consideration of the net flux of acoustic energy into the trailing edge region of the splitter plate, and by evaluating the rate of working of the vortex lift forces in the field of the acoustic particle velocity. In particular, it is shown that the absorption is independent of frequency, provided the frequency does not exceed the minimum cut-on frequency of transverse acoustic modes within the duct.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.