Abstract

Artificial viscosity is widely used in numerical calculations of stellar core collapse. The failure or success of the prompt mechanism explosion of type-II supernovae is strongly dependent on the numerical code, and the study of a suitable and efficient method of capturing the shock front is a current problem. We present a novel one-term artificial viscosity which is dependent on the velocity field along the shock front. We show that this form of artificial viscosity is able to capture the profile of a plane shock wave, removing the non-physical oscillations originated by the artificial viscosity of von Neumann and Richtmyer type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call