Abstract

There is evidence that sympathetic nerve activity leads to endothelium-derived nitric oxide release, which in turn attenuates neurogenic vasoconstriction. Here we tested in vivo (1) whether the magnitude of the vasoconstriction induced by N(G)-nitro-L-arginine methyl ester given systemically is altered when ongoing sympathetic activity is abolished by sectioning the lumbar sympathetic trunk, and (2) whether hindlimb sympathetic vasoconstriction elicited by electrical stimulation of the lumbar sympathetic trunk is enhanced after inhibition of nitric oxide synthesis. Blood flow in the microvascular beds of hairless skin and skeletal muscle of the rat hindlimb was measured with laser Doppler flowmetry. Sectioning the lumbar sympathetic trunk resulted in an increase of blood flow in both tissues, indicating that tonic neurogenic vasoconstriction was abolished. Inhibition of nitric oxide synthesis resulted in vasoconstriction in both vascular beds. This vasoconstriction was more pronounced after abolition of sympathetic activity than with intact sympathetic supply in skin but was smaller in skeletal muscle. The vasoconstriction elicited by graded electrical stimulation of the centrally sectioned lumbar sympathetic trunk with frequencies less than 5 Hz was significantly enhanced after blockade of nitric oxide in skeletal muscle but not in skin microvasculature. These findings suggest that under physiological conditions, sympathetic nerve impulses directly promote the release of nitric oxide in skeletal muscle but not in cutaneous blood vessels. Therefore, basal nitric oxide release is probably in part dependent on sympathetic activity in skeletal muscle, whereas it appears to be mainly due to flow-dependent shear stress in hairless skin microvasculature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.