Abstract

Lithium-sulfur batteries have a high energy density but lack cycle stability to reach market maturity. This is mainly due to the polysulfide shuttle mechanism, i. e., the leaching of active material from the cathode into the electrolyte and subsequent side reactions. We demonstrate how to attenuate the polysulfide shuttle by magnetron sputtering molybdenum oxysulfide, manganese oxide, and chromium oxide onto microporous polypropylene separators. The morphology of the amorphous coatings was analyzed by SEM and XRD. Electrochemical cyclization quantified how these coatings improved Coulombic efficiency and cycle stability. These tests were conducted in half cells. We compare the different performances of the different coatings with the known chemical and adsorption properties of the respective coating materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.