Abstract

The aim of this study was to investigate the long-range temporal correlations (LRTCs) of instantaneous amplitude of electrocortical oscillations in patients with autism spectrum disorder (ASD). Using the resting-state electroencephalography (EEG) of 15 patients with ASD (aged between 5˜18 years, mean age = 11.6 years, SD = 4.4 years) and 18 typical developing (TD) people (aged between 5˜18 years, mean age = 8.9 years, SD = 2.4 years), we estimated the LRTCs of neuronal oscillations amplitude of 84 predefined cortical regions of interest using detrended fluctuation analysis (DFA) after confirming the presence of scale invariance. We found that the DFA exponents of instantaneous amplitude of beta and low-gamma oscillations were significantly attenuated in patients with ASD compared to TD participants. Moreover, the regions with attenuated DFA exponent were mainly located in social functions related cortical networks, including the default mode network (DMN), the mirror neuron system (MNS) and the salience network (SN). These findings suggest that ASD is associated with highly volatile neuronal states of electrocortical oscillations, which may be related to social and cognitive dysfunction in patients with ASD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.