Abstract

Youth diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD) often show deficits in various measures of higher-level cognition, such as, executive functioning. Poorer cognitive functioning in children with ADHD has been associated with differences in functional connectivity across the brain. However, little is known about the developmental changes to the brain’s functional properties linked to different cognitive abilities in this cohort. To characterize these changes, we analyzed fMRI data (ADHD = 373, NT = 106) collected while youth between the ages of 6 and 16 watched a short movie-clip. We applied machine learning models to identify patterns of network connectivity in response to movie-watching that differentially predict cognitive abilities in our cohort. Using out-of-sample cross validation, our models successfully predicted IQ, visual spatial, verbal comprehension, and fluid reasoning in children (ages 6 – 11), but not in adolescents with ADHD (ages 12–16). Connections with the default mode, memory retrieval, and dorsal attention were driving prediction during early and middle childhood, but connections with the somatomotor, cingulo-opercular, and frontoparietal networks were more important in middle childhood. This work demonstrated that machine learning approaches can identify distinct functional connectivity profiles associated with cognitive abilities at different developmental stages in children and adolescents with ADHD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.